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Ubiquitous Euler Ubiquitous Numbers Some Formulas Sum of Rand Eulerian Numbers

Find That Formula

What is the total area of the shaded squares?

1

1
+

1

4
+

1

9
+

1

16
+ · · · = π2

6
.

Sam Vandervelde Euler Strikes Again



Ubiquitous Euler Ubiquitous Numbers Some Formulas Sum of Rand Eulerian Numbers

Find That Formula

What is the total area of the shaded squares?

1

1
+

1

4
+

1

9
+

1

16
+ · · · = π2

6
.

Sam Vandervelde Euler Strikes Again



Ubiquitous Euler Ubiquitous Numbers Some Formulas Sum of Rand Eulerian Numbers

Find That Formula

Let V , E, and F be

the total number of

vertices, edges and

faces in the polyhe-

dron shown at left.

Then we have

V − E + F = 2.
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Find That Formula

The path traced out

on this polar graph

paper gives a nice vi-

sual representation of

what famous formula

relating i, π, e?

πie = yummy.
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Find That Formula

The path traced out

on this polar graph

paper gives a nice vi-

sual representation of

what famous formula

relating i, π, e?

eπi = −1.
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Attribution Please

The three formulas just presented are

favorites of mathematicians everywhere.

Which one is due to Euler?

A. 1
1 +

1
4 +

1
9 +

1
16 + · · · =

π2

6

B. V − E + F = 2

C. eπi = −1

They all are!

Sam Vandervelde Euler Strikes Again



Ubiquitous Euler Ubiquitous Numbers Some Formulas Sum of Rand Eulerian Numbers

Attribution Please

The three formulas just presented are

favorites of mathematicians everywhere.

Which one is due to Euler?

A. 1
1 +

1
4 +

1
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1
16 + · · · =

π2

6

B. V − E + F = 2

C. eπi = −1
They all are!
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And Now For Something Completely Different

Imagine that during a mind-numbing plenary

session you were to use the RAND feature on

your calculator to generate a long list of

random numbers, each between 0 and 1.

Suppose that you decided to begin adding

up these random numbers.

Perhaps you begin to speculate about the

sorts of sums that arise in this manner. . .
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your calculator to generate a long list of
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An Obvious Question

If I add together five random

numbers, what will the total

be, on average?

Surely 2.5.
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An Obvious Question

If I add together five random

numbers, what will the total

be, on average? Surely 2.5.
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A Not So Obvious Question

What is the probability that the

sum of the five random num-

bers lies between 2 and 3?

Hmmm. . . that’s harder.
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A Not So Obvious Question

What is the probability that the

sum of the five random num-

bers lies between 2 and 3?

Hmmm. . . that’s harder.
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Democratic Math

Let’s take a vote. Would you say that the

probability that the sum lies between 2 and 3

A. is less than 50%

B. is equal to 50%

C. is greater than 50%

Time to find out!
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Let’s take a vote. Would you say that the

probability that the sum lies between 2 and 3

A. is less than 50%

B. is equal to 50%
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Time to find out!
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A Nifty Triangle of Numbers

Here are the numbers we’ve found so far:

What are the mystery values? DISCUSS
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A Nifty Triangle of Numbers

Here are the numbers we’ve found so far:

? Has anyone seen these numbers before?

? What do they remind you of?

? Can you find any neat properties?
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A Nifty Triangle of Numbers

Here are the numbers we’ve found so far:

? Has anyone seen these numbers before?

? What do they remind you of?

? Can you find any neat properties?
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A Nifty Triangle of Numbers

Here are the numbers we’ve found so far:

Very good; the row sums give factorials.

Now we’ll learn how to generate each row

from the previous one. Can you guess?
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A Nifty Triangle of Numbers

Here are the numbers we’ve found so far:

Very good; the row sums give factorials.

Now we’ll learn how to generate each row

from the previous one. Can you guess?
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Row Generation

We’ll illustrate the technique to obtain row 5.
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Row Generation

We’ll illustrate the technique to obtain row 5.

We include a few auxiliary numbers,
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Row Generation

We’ll illustrate the technique to obtain row 5.

We include a few auxiliary numbers, multiply,
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Row Generation

We’ll illustrate the technique to obtain row 5.

We include a few auxiliary numbers, multiply,

and add the results.
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Row Generation

We’ll illustrate the technique to obtain row 5.

The auxiliary numbers change as we move

across,
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Row Generation

We’ll illustrate the technique to obtain row 5.

The auxiliary numbers change as we move

across, but the rest stays the same.
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Row Generation

We’ll illustrate the technique to obtain row 5.

The auxiliary numbers change as we move

across, but the rest stays the same.
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Row Generation

We’ll illustrate the technique to obtain row 5.

Repeat this process to obtain the entire row.
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Row Generation

Now you use this technique to obtain row 6.

The first few auxiliary numbers are shown to

help you get started. Try it now!
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Row Generation

Now you use this technique to obtain row 6.

If all went well, you computed the row of six

numbers displayed above.
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Vandervelde Numbers

Here’s the entire triangle so far.

I discovered these numbers, so I get to name

them. I’ll call them Vandervelde numbers.

Sam Vandervelde Euler Strikes Again



Ubiquitous Euler Ubiquitous Numbers Some Formulas Sum of Rand Eulerian Numbers

Vandervelde Numbers

Here’s the entire triangle so far.

I discovered these numbers, so I get to name

them.

I’ll call them Vandervelde numbers.

Sam Vandervelde Euler Strikes Again



Ubiquitous Euler Ubiquitous Numbers Some Formulas Sum of Rand Eulerian Numbers

Vandervelde Numbers

Here’s the entire triangle so far.

I discovered these numbers, so I get to name

them. I’ll call them Vandervelde numbers.
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Scooped By Euler

Guess who began studying the properties of

these numbers over 250 years ago?
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Scooped By Euler

I guess we’ll have to call them by their

proper name, Eulerian numbers.
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Notable Notation

In order to easily refer to a particular

Eulerian number, we’ll indicate its row
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Notable Notation

In order to easily refer to a particular

Eulerian number, we’ll indicate its row

and its position within that row.
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Notable Notation

The Eulerian number in row n and position k

is variously called A(n, k) or E(n, k) or
〈
n
k

〉
.

Sam Vandervelde Euler Strikes Again



Ubiquitous Euler Ubiquitous Numbers Some Formulas Sum of Rand Eulerian Numbers

Notable Notation

I prefer
〈
n
k

〉
, so that’s what we’ll use today.

Thus
〈
3
1

〉
= 4 and

〈
6
4

〉
= 57.

Sam Vandervelde Euler Strikes Again



Ubiquitous Euler Ubiquitous Numbers Some Formulas Sum of Rand Eulerian Numbers

Notable Notation

I prefer
〈
n
k

〉
, so that’s what we’ll use today.

Thus
〈
3
1

〉
= 4 and

〈
6
4

〉
= 57.

Sam Vandervelde Euler Strikes Again



Ubiquitous Euler Ubiquitous Numbers Some Formulas Sum of Rand Eulerian Numbers

Deft Definitions

Let’s summarize what we know about

Eulerian numbers, using our new notation.

We define
〈
1
0

〉
= 1 and

〈
1
k

〉
= 0 for k 6= 0;

this gives the complete first row of the table.
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Deft Definitions

Let’s summarize what we know about

Eulerian numbers, using our new notation.

We define
〈
1
0

〉
= 1 and

〈
1
k

〉
= 0 for k 6= 0;

this gives the complete first row of the table.
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Deft Definitions

We then declare that〈
n
k

〉
= (n− k)

〈
n−1
k−1
〉
+ (k + 1)

〈
n−1
k

〉
.

This gives all subsequent rows of the table.
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Pretty Properties

We have discovered that〈
n
0

〉
+
〈
n
1

〉
+ · · · +

〈
n
n−1
〉
= n!.

(Why does this make sense, by the way?)
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Our First Result

Finally, Eulerian numbers provide the answer

to our probability question.

Theorem 1: Suppose we choose n real

numbers at random, each between 0 and 1.

Then the probability that their sum lies

between k and k + 1 is given by 1
n!

〈
n
k

〉
.

Proof: Stay tuned!
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to our probability question.

Theorem 1: Suppose we choose n real

numbers at random, each between 0 and 1.

Then the probability that their sum lies

between k and k + 1 is given by 1
n!

〈
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k

〉
.

Proof: Stay tuned!
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They’re Everywhere

You didn’t realize it, but Eulerian numbers

crop up all over the place.
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They’re Everywhere

See if you can spot the Eulerian numbers in

the following slides. (Raise your hand when

you think you’ve found one.)
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They’re Everywhere

Right, a marathon is 26 miles long.
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They’re Everywhere

Right, a marathon is 26 miles long.
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Counting Ascents

Consider the following permutation of the

numbers 1, 2 and 3:

2 3 1

↗ ↘

This permutation involves one ascent and

one descent.
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Counting Ascents

Consider the following permutation of the

numbers 1, 2 and 3:

2 3 1↗ ↘

This permutation involves one ascent and

one descent.
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Counting Ascents

Let’s count the total number of ascents for

each permutation of 1, 2, 3 just for kicks.

1 2 3 2 ascents

1 3 2 1 ascent

2 1 3 1 ascent

2 3 1 1 ascent

3 0 2 1 ascent
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Counting Ascents

Let’s count the total number of ascents for
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Counting Ascents

Let’s count the total number of ascents for

each permutation of 1, 2, 3 just for kicks.

1 2 3 2 ascents

1 3 2 1 ascent

2 1 3 1 ascent

2 3 1 1 ascent

3 0 2 1 ascent

3 2 1

0 ascents
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Counting Ascents

Let’s count the total number of ascents for

each permutation of 1, 2, 3 just for kicks.

1 2 3 2 ascents

1 3 2 1 ascent

2 1 3 1 ascent

2 3 1 1 ascent

3 0 2 1 ascent

3 2 1 0 ascents
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Counting Ascents

Let’s count the total number of ascents for

each permutation of 1, 2, 3 just for kicks.

1 2 3 2 ascents

1 3 2 1 ascent

2 1 3 1 ascent

2 3 1 1 ascent

3 0 2 1 ascent

3 2 1 0 ascents
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Salient alien

In general, if we sort permutations according

to the number of ascents, the sizes of the

resulting sets are given by Eulerian numbers.
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In general, if we sort permutations according

to the number of ascents, the sizes of the

resulting sets are given by Eulerian numbers.
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Roller Coaster Math

Consider a permutation of 1, 2, 3, 4, 5:

∗ ↗ ∗ ↘ ∗ ↗ ∗ ↘ ∗

↑

What if we insert a 6 right there? How will

the number of ascents change?
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Roller Coaster Math

Consider a permutation of 1, 2, 3, 4, 5:

∗ ↗ ∗ ↘ ∗ ↗ ∗ ↘ ∗
↑

What if we insert a 6 right there? How will

the number of ascents change?

Not at all

How many different locations are there to

insert a 6, while we’re at it? 6
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∗ ↗ ∗ ↘ ∗ ↗ ∗ ↘ ∗
↑

What if we insert a 6 right there? How will

the number of ascents change? Not at all

How many different locations are there to

insert a 6, while we’re at it?

6
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Consider a permutation of 1, 2, 3, 4, 5:

∗ ↗ ∗ ↘ ∗ ↗ ∗ ↘ ∗
↑

What if we insert a 6 right there? How will

the number of ascents change?

Sam Vandervelde Euler Strikes Again



Ubiquitous Euler Ubiquitous Numbers Real Life Permutations Volume Powers

Roller Coaster Math

Consider a permutation of 1, 2, 3, 4, 5:

∗ ↗ ∗ ↘ ∗ ↗ ∗ ↘ ∗
↑

What if we insert a 6 right there? How will

the number of ascents change?

Sam Vandervelde Euler Strikes Again



Ubiquitous Euler Ubiquitous Numbers Real Life Permutations Volume Powers

Euler Would Be Proud

Let’s build a permutation of 1, 2, 3, 4, 5, 6

having precisely three ascents, by inserting a

6 into permutations of 1, 2, 3, 4, 5.

∗ ∗ ∗ ∗ ∗ # ascents?

Sam Vandervelde Euler Strikes Again



Ubiquitous Euler Ubiquitous Numbers Real Life Permutations Volume Powers

Euler Would Be Proud

Let’s build a permutation of 1, 2, 3, 4, 5, 6

having precisely three ascents, by inserting a

6 into permutations of 1, 2, 3, 4, 5.

∗ ∗ ∗ ∗ ∗ ↗ ↗ ↘ ↘

How many ways to insert the 6?

3

So far we have 3(# ways ascent = 2).
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∗ ∗ ∗ ∗ ∗ ↗ ↗ ↘ ↘

How many ways to insert the 6? 3

So far we have 3(# ways ascent = 2).
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Euler Would Be Proud

Let’s build a permutation of 1, 2, 3, 4, 5, 6

having precisely three ascents, by inserting a

6 into permutations of 1, 2, 3, 4, 5.

∗ ∗ ∗ ∗ ∗ ↗ ↗ ↗ ↘

Now how many ways to insert the 6?

4

This gives 4(# ways ascent = 3).
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Euler Would Be Proud

Let’s build a permutation of 1, 2, 3, 4, 5, 6

having precisely three ascents, by inserting a

6 into permutations of 1, 2, 3, 4, 5.

∗ ∗ ∗ ∗ ∗ ↗ ↗ ↗ ↘

Now how many ways to insert the 6? 4

This gives 4(# ways ascent = 3).
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Euler Would Be Proud

I just happen to know there are 66 permu-

tations of 1, 2, 3, 4, 5 with two ascents, and

26 permutations with three ascents.

Hence our total is

3(66) + 4(26) = 302.

The same reasoning works in general. AYD
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Our Second Result

Theorem 2: Let n be a positive integer,

so there are n! permutations of the numbers

1, 2, 3, . . . , n. For each integer k in the

range 0 ≤ k ≤ n− 1 there are a total of
〈
n
k

〉
permutations having exactly k ascents.
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Slicing a Cube

Let’s return to our probability question

for a moment and consider it from a

geometric vantage point.

What is a convenient way to represent the

set of all possible triples of numbers, each

of which lies between 0 and 1?
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Slicing a Cube

Which portion corresponds to the triples of

numbers whose sum is between 0 and 1?
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Slicing a Cube

Which portion corresponds to the triples of

numbers whose sum is between 1 and 2?
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Slicing a Cube

How do we obtain the probabilities from this

geometric diagram?
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Slicing a Cube

Guess what happens when we add four or

five random numbers rather than three?
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Slicing a Cube

Let’s hope slicing an n-cube with certain

planes produces pieces whose volumes are

given by Eulerian numbers. Check it out:

Carve up the unit 4-cube into regions

such as x < z < y < w.

How many such regions are there? 24

How do their volumes compare? equal
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Is It Lunch Time Yet?

There is a clever way to transform each

region like x < z < y < w into a new one:

Z = z

Y = y − z
X = x− y + 1

W = w − x

w x y z

4 1 3 2

Observe that W +X + Y + Z = 1 + w,

therefore 1 < W +X + Y + Z < 2.
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I’m Really Hungry

Let’s try out another such region, trans-

forming w < z < x < y into a new region:

Z = z

Y = y − z
X = x− y + 1

W = w − x + 1

w x y z

1 3 4 2

Observe that W +X + Y + Z = 2 + w,

therefore 2 < W +X + Y + Z < 3.
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Give Me Food Now

Just to move things along, we’ll employ a

QuickProofTM.

What would it take for this

strategy to work?

Volume is preserved. Routine

Regions don’t overlap. No problem

You’re still awake. WELL!?!?

Voilá, an elegant proof of the random

number sum conjecture is ours.

Sam Vandervelde Euler Strikes Again
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Public Service Announcement

We’re going to speed up a little bit now. You

may want to fasten your seatbelts. . .
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More Power To You

Here is a nifty surprise. Look at the numbers

in the k = 3 position within Pascal’s triangle.

Sam Vandervelde Euler Strikes Again



Ubiquitous Euler Ubiquitous Numbers Real Life Permutations Volume Powers

More Power To You

Now we line up the n = 3 row of Eulerian

numbers alongside them.
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More Power To You

Next follow the usual routine: multiply down,
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More Power To You

Next follow the usual routine: multiply down,

then add across.
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More Power To You

Repeat this process until the pattern appears.

Sam Vandervelde Euler Strikes Again



Ubiquitous Euler Ubiquitous Numbers Real Life Permutations Volume Powers

More Power To You

Do you see it yet?
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More Power To You

Do you see it yet? Isn’t that amazing?
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More Power To You

What happens if we overlay the fourth row of

the Eulerian triangle with the numbers in the

k = 4 position within Pascal’s triangle?

Yup
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Our Fourth Result

If we combine the Eulerian numbers with

Pascal’s triangle in just the right way, we

produce perfect powers.

For instance,

Theorem 4: For positive integer n(
n
4

)〈
4
0

〉
+
(
n+1
4

)〈
4
1

〉
+
(
n+2
4

)〈
4
2

〉
+
(
n+3
4

)〈
4
3

〉
= n4.

Proof: algebra bash. (Euler is sad.)
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Proof By What!?

Here’s how a combinatorial proof works.

Interpret
(
n
4

)〈
4
0

〉
: a b c · · · n

[ d c b a ] −→ dcba

Interpret
(
n+1
4

)〈
4
1

〉
: a b c · · · n =

[ d c a b ] −→ dcab

[ c b = a ] −→ cbaa or cbba

[ c b a = ] −→ cbaa or cbac
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Proof By GATTLP

Here’s how a combinatorial proof works.

Next
(
n+2
4

)〈
4
2

〉
: a b c · · · n =

.
=

[ a b = c ] −→ abbc

[ a b
.
= c ] −→ abcc

[ a =
.
= b ] −→ aabb?

What to do about three equal signs?

[ a =
.
=

..
= ] −→ aaaa
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Proof By SWATSD

If you can find just the right way to interpret

equal signs, then you will have a beautiful

proof of this identity!

G O O D L U C K
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Power Play

We have just seen that by combining

Eulerian numbers with Pascal’s triangle,

we can produce perfect powers.

But did you know that by taking differ-

ences of perfect powers, we can recover

the Eulerian numbers?

Check it out:
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Power Play

0 0 0 0 1 8 27 64 125

0 0 0 1 7 19 37 61

0 0 0 1 6 12 18 24 30

0 0 1 5 6 6 6 6

0 0 1 4 1 0 0 0 0

Pretty sweet, wouldn’t you say?
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Our Fifth Result

Naturally, if we began with fourth powers, we

would have obtain the fourth row of the

Eulerian triangle instead.

In general, we have

Theorem 5: Create an infinite sequence of

integers consisting of all 0’s followed by the

perfect nth powers. After taking n + 1

differences, we will be left with a row of all

0’s except for row n of the Eulerian triangle.

Sam Vandervelde Euler Strikes Again



Ubiquitous Euler Ubiquitous Numbers Real Life Permutations Volume Powers

Our Fifth Result

Naturally, if we began with fourth powers, we

would have obtain the fourth row of the

Eulerian triangle instead. In general, we have

Theorem 5: Create an infinite sequence of

integers consisting of all 0’s followed by the

perfect nth powers. After taking n + 1

differences, we will be left with a row of all

0’s except for row n of the Eulerian triangle.

Sam Vandervelde Euler Strikes Again



Ubiquitous Euler Ubiquitous Numbers Real Life Permutations Volume Powers

Our Fifth Result

Here’s what the diagram looks like in general:

0 0 0 0 1n 2n 3n 4n 5n

differences go here

0 0 0
〈
n
0

〉 〈
n
1

〉 〈
n
2

〉 〈
n

n−1

〉
· · ·

Try n = 4 for fun, or n = 5 if you dare.
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That’s All Folks

Thanks for being such a great audience!
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