\equiv Neutron Graphs \equiv

Math π ath 2018 • Lewis & Clark College

Sam Vandervelde • Proof School • July 5, 2018

Sam Vandervelde Neutron Graphs

Don't Fall For It

Which is heavier, a pound of feathers or a pound of lead?

Don't Fall For It

Which is heavier, a pound of feathers or a pound of lead?

They both weigh one pound, of course!

As Dense As It Gets

What volume of neutron star material has the same mass as a cube of rock 10 km (about 6 miles) on a side?

As Dense As It Gets

What volume of neutron star material has the same mass as a cube of rock 10 km (about 6 miles) on a side?

The degree of a polynomial refers to the highest power of x in its equation.

The degree of a polynomial refers to the highest power of x in its equation. What is the degree of each of these polynomials?

•
$$x^5 + x^2 - x$$

The degree of a polynomial refers to the highest power of x in its equation. What is the degree of each of these polynomials?

•
$$x^5 + x^2 - x$$
 5

•
$$(x^5+1)/(x+1)$$

The degree of a polynomial refers to the highest power of x in its equation. What is the degree of each of these polynomials?

•
$$x^5 + x^2 - x$$
 5

•
$$(x^5+1)/(x+1)$$
 4

• $2018x^4 - 1776x^3 + 1000x^7 - 5$

The degree of a polynomial refers to the highest power of x in its equation. What is the degree of each of these polynomials?

•
$$x^5 + x^2 - x$$
 5

•
$$(x^5+1)/(x+1)$$
 4

• $2018x^4 - 1776x^3 + 1000x^7 - 5$ 7

The degree influences the shape of the graph.

Hint: Count The Roots

What degree polynomial is most likely to produce the following graph?

Hint: Count The Roots

What degree polynomial is most likely to produce the following graph?

Coordinate Plane Hogs

Here is a degree five polynomial. It's going to require a lot of room to see all the interesting behavior!

$$x^5 - 10x^4 - 30x^2 + 40$$

Coordinate Plane Hogs

Here is a degree five polynomial. It's going to require a lot of room to see all the interesting behavior!

$$x^5 - 10x^4 - 30x^2 + 40$$

This degree six beast will be even worse.

$$32x^6 - 48x^4 + 18x^2 - 1$$

A neutron graph is a polynomial graph that
Enters and exits the unit window at the corners, including the point (1, 1),

- A neutron graph is a polynomial graph that
 - Enters and exits the unit window at the corners, including the point (1, 1),
 - has all local minimums and maximums along the border of the unit window,

- A neutron graph is a polynomial graph that
 - Enters and exits the unit window at the corners, including the point (1, 1),
 - has all local minimums and maximums along the border of the unit window,
 - and exhibits no other noteworthy behavior outside the unit window.

- A neutron graph is a polynomial graph that
 - Enters and exits the unit window at the corners, including the point (1, 1),
 - has all local minimums and maximums along the border of the unit window,
 - and exhibits no other noteworthy behavior outside the unit window.

How must a degree two neutron graph look?

Parabola Parameters

・ロト ・日下・ ・日下

문 논 문

Parabola Parameters

This parabola has an equation of the form $Ax^2 + Bx + C$. What are A, B and C?

Parabola Parameters

The y-intercept is at -1, so we may deduce that C = -1. Thus $y = Ax^2 + Bx - 1$.

Burbanas...

The graph is symmetric over the y-axis, hence B = 0. So far $y = Ax^2 - 1$.

Or Donucorns?

Finally, the graph passes through (1, 1), thus A = 2. In summary, we have $y = 2x^2 - 1$.

Low Hanging Fruit

This will either seem easy or puzzling: what is the degree 1 neutron graph?

Low Hanging Fruit

This will either seem easy or puzzling: what is the degree 1 neutron graph? y=x

Lower Hanging Fruit

Even easier or more puzzling: what is the degree 0 neutron graph?

Lower Hanging Fruit

Even easier or more puzzling: what is the degree 0 neutron graph? y=1

Cubic Conundrum

Next consider $y = Ax^3 + Bx^2 + Cx + D$. How must a degree 3 neutron graph appear?

Cubic Conundrum

Next consider $y = Ax^3 + Bx^2 + Cx + D$. How should we choose A, B, C and D?

Burbanacorns!

The y-intercept idea reveals that D = 0. Now we have $y = Ax^3 + Bx^2 + Cx$.

Suburban Acorns?

Symmetry about the origin suggests B = 0. This brings us to $y = Ax^3 + Cx$.

Cubic Conundrum

The graph passes through (1, 1), therefore A + C = 1, like $y = 2x^3 - x$ or $3x^3 - 2x$.

┌┦ ▶ ◀ 🗐

Cubic Zirconium

So our cubic graph must have the form $y = ax^3 - (a - 1)x$. But how to choose a?

● ▶ ▲ ●

Barium Cobalt Nitrogen

Trying out values of a suggests that we select a = 4, so that $y = 4x^3 - 3x$. How can we confirm this choice?

Barium Cobalt Nitrogen

Trying out values of a suggests that we select a = 4, so that $y = 4x^3 - 3x$. How can we confirm this choice? *Calculus!*

Barium Cobalt Nitrogen

Trying out values of a suggests that we select a = 4, so that $y = 4x^3 - 3x$. How can we confirm this choice? *Calculus!*

• The slope is given by $12x^2 - 3$.
Barium Cobalt Nitrogen

Trying out values of a suggests that we select a = 4, so that $y = 4x^3 - 3x$. How can we confirm this choice? *Calculus!*

- The slope is given by $12x^2 3$.
- Low point requires $12x^2 3 =$

Barium Cobalt Nitrogen

Trying out values of a suggests that we select a = 4, so that $y = 4x^3 - 3x$. How can we confirm this choice? *Calculus!*

- The slope is given by $12x^2 3$.
- Low point requires $12x^2 3 = 0$.
- This occurs for x =

Barium Cobalt Nitrogen

Trying out values of a suggests that we select a = 4, so that $y = 4x^3 - 3x$. How can we confirm this choice? *Calculus!*

- The slope is given by $12x^2 3$.
- Low point requires $12x^2 3 = 0$.
- This occurs for $x = \frac{1}{2}$.
- The *y*-value there is. . .

Germanium Nickel Uranium Sulfur

Trying out values of a suggests that we select a = 4, so that $y = 4x^3 - 3x$. How can we confirm this choice? *Calculus*

- The slope is given by $12x^2 3$.
- Low point requires $12x^2 3 = 0$.
- This occurs for $x = \frac{1}{2}$.
- The y-value there is y = -1. Nice!

We now know the degree 3 neutron graph.

Making A List, Checking It Twice

Here are the formulas for our neutron graphs:

Degree	Formula			
0	1			
1	x			
2	$2x^2 - 1$			
3	$4x^3 - 3x$			

Making A List, Checking It Twice

Here are the formulas for our neutron graphs:

Degree	Formula				
0	1				
1	x				
2	$2x^2 - 1$				
3	$4x^3 - 3x$				
4	???				

What do you suppose is the formula the next polynomial in the list? DISCUSS

Making A List, Checking It Twice

Here are the formulas for our neutron graphs:

Degree	Formula
0	1
1	x
2	$2x^2 - 1$
3	$4x^3 - 3x$
4	$8x^4$

Making A List, Checking It Twice

Here are the formulas for our neutron graphs:

Degree	Formula	
0	1	
1	x	
2	$2x^2 - 1$	
3	$4x^3 - 3x$	
4	$8x^4$	+

1

_ ▶ <

Making A List, Checking It Twice

Here are the formulas for our neutron graphs:

Formula
1
x
$2x^2 - 1$
$4x^3 - 3x$
$8x^4 - 8x^2 + 1$

Let's test it out!

Here's a productive perspective. Just like Fibonacci numbers, it's possible to build each neutron graph formula from the previous two. See if you can figure out how:

$$\begin{array}{r}(2x^2-1)\\(4x^3-3x)\\\hline 8x^4-8x^2+1\end{array}$$

Here's a productive perspective. Just like Fibonacci numbers, it's possible to build each neutron graph formula from the previous two. See if you can figure out how:

$$(2x^2 - 1)
2x(4x^3 - 3x)
8x^4 - 8x^2 + 1$$

Here's a productive perspective. Just like Fibonacci numbers, it's possible to build each neutron graph formula from the previous two. See if you can figure out how:

$$-(2x^2 - 1)
\frac{2x(4x^3 - 3x)}{8x^4 - 8x^2 + 1}$$

That does the job quite nicely.

New Tron Pat Urns

What happens if we apply this technique on our degree three and four polynomials?

$$\frac{-(4x^3 - 3x)}{2x(8x^4 - 8x^2 + 1)}$$
?

What happens if we apply this technique on our degree three and four polynomials?

$$\begin{array}{r} -(4x^3 - 3x) \\ \hline
 2x(8x^4 - 8x^2 + 1) \\ \hline
 16x^5 \\ \end{array}$$

What happens if we apply this technique on our degree three and four polynomials?

$$\frac{-(4x^3 - 3x)}{2x(8x^4 - 8x^2 + 1)}$$
$$\frac{16x^5 - 20x^3}{20x^3}$$

What happens if we apply this technique on our degree three and four polynomials?

$$\frac{-(4x^3 - 3x)}{2x(8x^4 - 8x^2 + 1)}$$

0

$$16x^5 - 20x^3 + 5x$$

Wanna see whether it works?

What happens if we apply this technique on our degree three and four polynomials?

$$\frac{-(4x^3 - 3x)}{2x(8x^4 - 8x^2 + 1)}$$

0

$$16x^5 - 20x^3 + 5x$$

Wanna see whether it works?

Looks like our work here is done.

Making A List, Checking It Twice

Here are formulas for lots of neutron graphs:

Degree	Formula
1	x
2	$2x^2 - 1$
3	$4x^3 - 3x$
4	$8x^4 - 8x^2 + 1$
5	$16x^5 - 20x^3 + 5x$
6	$32x^6 - 48x^4 + 18x^2 - 1$
7	$64x^7 - 112x^5 + 56x^3 - 7x$

Order Within Chaos

Here are the neutron graphs up to degree 9.

Trig To The Rescue

The key to unlocking the mystery of neutron graphs is cosine.

Trig To The Rescue

The key to unlocking the mystery of neutron graphs is cosine. *Yay for trigonometry!*

Trig To The Rescue

The key to unlocking the mystery of neutron graphs is cosine. Let's review a few basics.

Trig To The Rescue

æ

3

・ロト ・日下 ・ 日下

Here is a natural question to ask:

If we know the value of $\cos \theta$, can we deduce the value of $\cos(2\theta)$?

Here is a **natural** question to ask:

If we know the value of $\cos \theta$, can we deduce the value of $\cos(2\theta)$?

For instance, suppose we know that $\cos \theta = \frac{1}{2}$. What is the value of $\cos(2\theta)$? (Um, I forgot that chart already...)

æ

< Ξ.

・ロト ・日下 ・ 日下

What if $\cos \theta = -0.2$; estimate $\cos(2\theta)$.

What if $\cos \theta = -0.2$; estimate $\cos(2\theta)$.

Very close! The precise answer is -0.92.

What Is The Difference

What if
$$\cos \theta = \frac{2}{3}$$
; calculate $\cos(2\theta)$.

0.36787944117144									
()	mc	m+	m-	mr	AC	+/_	%	
2 nd	x²	x ³	x ^y	e×	10 [×]	7	8	9	
$\frac{1}{X}$	ŶX	∜×	Хy	In	log ₁₀	4	5	6	
x!	sin	COS	tan	е	EE	1	2	3	
Rad	sinh	cosh	tanh	π	Rand	0			

æ

Э

▲□ ▶ ▲ 目

What Is The Difference

What if
$$\cos \theta = \frac{2}{3}$$
; calculate $\cos(2\theta)$.

0.36787944117144									
()	mc	m+	m-	mr	AC	+/_	%	
2 nd	x²	x ³	xy	e×	10 [×]	7	8	9	
$\frac{1}{X}$	Ŷ×	∜x	∜у	In	log ₁₀	4	5	6	
x!	sin	COS	tan	е	EE	1	2	3	
Rad	sinh	cosh	tanh	π	Rand	0			

```
How suspicious; that is clearly -\frac{1}{9}.
```

Between Seal and Sea Lion?

It's time to settle this. Where is $\cos \theta$?

Answer: One Electron

It's time to settle this. Where is $\cos \theta$? Good Where else is $\cos \theta$?

Double Vision

It's time to settle this. Where is $\cos \theta$? Good Where else is $\cos \theta$? Yes Where is $\cos(2\theta)$?

Double Vision

Let's label the green length as x; we want to find the red length in terms of x. What next?

Double Vision

Let's hear it for Pythagoras. Can you put some similar triangles to work now?

This Is Too Phosphorous!

Not bad. We must be getting close! What do you suppose the next step is?
Density Formulas Revelation

This Slide is Boron

Nice ALGEBRASKILLZTM. We're almost there. Can anyone bring us home?

All the Good Jokes Argon

Theorem

Suppose we write x to refer to the value of $\cos \theta$. Then we have proven that

$$\cos(2\theta) = 2x^2 - 1$$

All the Good Jokes Argon

Theorem

Suppose we write x to refer to the value of $\cos \theta$. Then we have proven that

$$\cos(2\theta) = 2x^2 - 1$$

To double check, suppose $x = \cos \theta = -0.2$. Then $\cos(2\theta) = 2x^2 - 1 =$

All the Good Jokes Argon

Theorem

Suppose we write x to refer to the value of $\cos \theta$. Then we have proven that

$$\cos(2\theta) = 2x^2 - 1$$

To double check, suppose $x = \cos \theta = -0.2$. Then $\cos(2\theta) = 2x^2 - 1 = -0.92$. Bingo

• Has anyone noticed anything suspicious?

- Has anyone noticed anything suspicious?
- What do you reckon will be the case if we take $x = \cos \theta$ and compute $4x^3 3x$?

- Has anyone noticed anything suspicious?
- What do you reckon will be the case if we take $x = \cos \theta$ and compute $4x^3 3x$?
- How can we visually confirm this?

- Has anyone noticed anything suspicious?
- What do you reckon will be the case if we take $x = \cos \theta$ and compute $4x^3 3x$?
- How can we visually confirm this?
- And what about $8x^4 8x^2 + 1$?

It All Makes Sense

Theorem

Substitute $x = \cos \theta$ in the polynomial formula for the degree n neutron graph. Then the result will simplify to $\cos(n\theta)$.

Let's check this out for n = 5. How does this result explain why the graph is so dense?

It All Makes Sense

It All Makes Cents

Consider
$$16x^5 - 20x^3 + 5x$$
.

•
$$0^{\circ} \le \theta \le 180^{\circ} \implies x = 1 \text{ to } -1$$

• Using $x = \cos \theta$ gives $y = \cos(5\theta)$

It All Makes Sense

Consider
$$16x^5 - 20x^3 + 5x$$
.

•
$$0^{\circ} \le \theta \le 180^{\circ} \implies x = 1 \text{ to } -1$$

- Using $x=\cos\theta$ gives $y=\cos(5\theta)$
- Therefore −1 ≤ y ≤ 1, and all of the maximums and minimums of the graph occur along the boundaries y = 1 and y = −1 of the unit window.

It All Makes Sense

Consider
$$16x^5 - 20x^3 + 5x$$
.

• $0^{\circ} \leq \theta \leq 180^{\circ} \implies x = 1 \text{ to } -1$

- Using $x=\cos\theta$ gives $y=\cos(5\theta)$
- Therefore $-1 \le y \le 1$, and all of the maximums and minimums of the graph occur along the boundaries y = 1 and y = -1 of the unit window.
- This even explains the overlapping graphs!

My Kingdom For a Proof

Our theorem explains everything. If only we could prove it. Let's assume that the result is true for n = 2, n = 3 and n = 4. Can we use this to get anywhere?

Here's the degree five neutron polynomial:

$$16x^5 - 20x^3 + 5x$$

My Kingdom For a Proof

Our theorem explains everything. If only we could prove it. Let's assume that the result is true for n = 2, n = 3 and n = 4. Can we use this to get anywhere?

Here's the degree five neutron polynomial:

$$2x(8x^4 - 8x^2 + 1) - (4x^3 - 3x)$$

My Kingdom For a Poof

Our theorem explains everything. If only we could prove it. Let's assume that the result is true for n = 2, n = 3 and n = 4. Can we use this to get anywhere?

Here's the degree five neutron polynomial:

 $2\cos\theta(8\cos^4\theta-8\cos^2\theta+1)-(4\cos^3\theta-3\cos\theta)$

My Phylum For a Proof

Our theorem explains everything. If only we could prove it. Let's assume that the result is true for n = 2, n = 3 and n = 4. Can we use this to get anywhere?

Here's the degree five neutron polynomial:

 $2\cos\theta(8\cos^4\theta - 8\cos^2\theta + 1) - (\cos 3\theta)$

My Kingdom For a Proof

Our theorem explains everything. If only we could prove it. Let's assume that the result is true for n = 2, n = 3 and n = 4. Can we use this to get anywhere?

Here's the degree five neutron polynomial:

$$(2\cos\theta\cos4\theta) - \cos3\theta$$

I Used To Like Trig

Our theorem explains everything. If only we could prove it. Let's assume that the result is true for n = 2, n = 3 and n = 4. Can we use this to get anywhere?

Here's the degree five neutron polynomial:

$$(\cos 5\theta + \cos 3\theta) - \cos 3\theta$$

Victory = Lunch

Our theorem explains everything. If only we could prove it. Let's assume that the result is true for n = 2, n = 3 and n = 4. Can we use this to get anywhere?

Here's the degree five neutron polynomial:

 $\cos 5\theta$.

And you're done!

See You Tomorrow

Trous tamers, don't forget to write up your proof to turn in this afternoon!

See You Tomorrow

Dr.V will be in the main lounge from 1:00 to 1:30 today to help out and shoot pool.

Density Formulas Revelation

There Is Nothing To See

æ

E

▲ □ ▶ ▲ 三