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What is a tessellation?

A tiling or a tessellation of the plane is a covering of the plane with various
(closed and countably many) shapes and with no overlaps and no gaps (other
than overlaps on the boundaries of the shapes).
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For today allow only regular polygons for tiles.
Some possible tessellations with regular polygons:

For today allow only edge-to-edge tessellations (only the leftmost example).





Stack these rows, matching vertices, but vary the numbers of types of strips.
You get uncountably many tessellations.



Stack these rows, matching vertices, but vary the numbers of types of strips.
You get uncountably many tessellations.

Or tessellate with identical rows of hexagons and triangles in uncountably many
ways by stacking them in two different ways:
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Type of a vertex:
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For now we restrict attention to edge-to-edge tessellations by regular polygons
in which each vertex has the same type.

Such tessellations are called semiregular tessellations, or also homogeneous
tessellations, Archimedean tessellations, 1-uniform tessellations.
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Determining all semiregular tessellations
Some examples:

(1) Type 4.4.4.4 (all squares)
(2) Type 3.3.3.3.3.3 (all triangles)
(3) Type 6.6.6 (all hexagons)
(4) Type 3.6.3.6
(5) Type 3.3.3.4.4

There are others. How do we find them all?



Theorem. A regular polygon with n sides (n-gon) has interior angles equal
180 − 360

n in degrees.
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Theorem. A regular polygon with n sides (n-gon) has interior angles equal
180 − 360

n in degrees.

Here is an n-gon:

The sum of all the angles in all n triangles is n · 180◦,
the sum of all the angles at the central vertex is 360◦,
so the sum of all interior angles in an n-gon is (n− 2)180◦.

Thus an interior angle in a regular n-gon measures n−2
n 180◦.
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In a semiregular tessellation in which each vertex has type n1.n2. . . . .nr, the
angles of these gons have to add up to 360◦.



From the previous page:
An interior angle in a regular n-gon measures n−2

n 180◦.

In a semiregular tessellation in which each vertex has type n1.n2. . . . .nr, the
angles of these gons have to add up to 360◦.

Thus we get:
Theorem. In order for a regular n1-gon, n2-gon, . . ., and an nr-gon to meet at
a vertex without overlaps and without gaps, it is necessary and sufficient that

n1 − 2

n1
180◦ +

n2 − 2

n2
180◦ + · · · +

nr − 2

nr
180◦ = 360◦.
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Theorem. In order for a regular n1-gon, n2-gon, . . ., and an nr-gon to meet at
a vertex without overlaps and without gaps, it is necessary and sufficient that
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+
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so that
r

3
= r − r

2

3
≤ 2,

which means that r ≤ 6.



So, we have to find all integer solutions n1, n2, . . . , nr ≥ 3 of
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This is now number theory, via case analysis. (These equations are Diophan-
tine.)
For example, let r = 3. Then we need to find n1, n2 and n3 with 3 − 2 =
2
n1

+ 2
n2

+ 2
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, i.e., with 1
2 = 1

n1
+ 1
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+ 1

n3
.

If n1 ≤ n2 ≤ n3, then n1 ≤ 6.

If n1 = 3, then we need to find n2 and n3 with 1
6 = 1

n2
+ 1

n3
.
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Solving 1
6 = 1

n2
+ 1

n3
(or n3 = 6 + 36

n2−6 ):

All solutions (with r = 3, n1 = 3 ≤ n2 ≤ n3):
n2 = 7, n3 = 42,
n2 = 8, n3 = 24,
n2 = 9, n3 = 18,
n2 = 10, n3 = 15,
n2 = 12, n3 = 12.

Still need all solutions to r − 2 =
2

n1
+

2
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+ · · · +

2

nr
for r = 3, r = 4, r = 5 and r = 6.



The complete list of integer solutions n1, . . . , nr ≥ 3 for the solutions of
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if we ignore the order of the ni, is:

(1) 3, 3, 3, 3, 3, 3
(2) 3, 3, 3, 3, 6
(3) 3, 3, 3, 4, 4
(4) 3, 3, 4, 12
(5) 3, 3, 6, 6
(6) 3, 4, 4, 6

(7) 3, 7, 42
(8) 3, 8, 24
(9) 3, 9, 18

(10) 3, 10, 15
(11) 3, 12, 12
(12) 4, 4, 4, 4

(13) 4, 5, 20
(14) 4, 6, 12
(15) 4, 8, 8
(16) 5, 5, 10
(17) 6, 6, 6
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if we ignore the order of the ni, is:

(1) 3, 3, 3, 3, 3, 3
(2) 3, 3, 3, 3, 6
(3) 3, 3, 3, 4, 4
(4) 3, 3, 4, 12
(5) 3, 3, 6, 6
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(8) 3, 8, 24
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(17) 6, 6, 6

Warning: not all of these are realizable semiregular tessellations;



The complete list of integer solutions n1, . . . , nr ≥ 3 for the solutions of

n1 − 2

n1
+

n2 − 2

n2
+ · · · +

nr − 2

nr
= 2,

if we ignore the order of the ni, is:

(1) 3, 3, 3, 3, 3, 3
(2) 3, 3, 3, 3, 6
(3) 3, 3, 3, 4, 4
(4) 3, 3, 4, 12
(5) 3, 3, 6, 6
(6) 3, 4, 4, 6

(7) 3, 7, 42
(8) 3, 8, 24
(9) 3, 9, 18

(10) 3, 10, 15
(11) 3, 12, 12
(12) 4, 4, 4, 4

(13) 4, 5, 20
(14) 4, 6, 12
(15) 4, 8, 8
(16) 5, 5, 10
(17) 6, 6, 6

Warning: not all of these are realizable semiregular tessellations;
solution 3,3,3,4,4 yields two semiregular tessellations.



Eliminate some options
The vertex configuration 3, 3, 4, 12 on the list could yield vertex types 3.3.4.12
or 3.4.3.12. Neither is possible. I show how to eliminate 3.3.4.12.
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Eliminate some options
The vertex configuration 3, 3, 4, 12 on the list could yield vertex types 3.3.4.12
or 3.4.3.12. Neither is possible. I show how to eliminate 3.3.4.12.
Forced to continue with a triangle:

but a triple triangle vertex is not allowed for 3, 3, 4, 12.



Theorem. There are 11 semi-regular tessellations up to translations, rotations
and reflections:

(1) 3.3.3.3.3.3
(2) 3.3.3.3.6
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(5) 3.4.6.4
(6) 3.6.3.6
(7) 3.12.12
(8) 4.4.4.4

(9) 4.6.12
(10) 4.8.8
(11) 6.6.6



Theorem. There are 11 semi-regular tessellations up to translations, rotations
and reflections:

(1) 3.3.3.3.3.3
(2) 3.3.3.3.6
(3) 3.3.3.4.4
(4) 3.3.4.3.4

(5) 3.4.6.4
(6) 3.6.3.6
(7) 3.12.12
(8) 4.4.4.4

(9) 4.6.12
(10) 4.8.8
(11) 6.6.6

Compare to all solutions from before:

(1) 3, 3, 3, 3, 3, 3
(2) 3, 3, 3, 3, 6
(3) 3, 3, 3, 4, 4
(4) 3, 3, 4, 12
(5) 3, 3, 6, 6
(6) 3, 4, 4, 6

(7) 3, 7, 42
(8) 3, 8, 24
(9) 3, 9, 18

(10) 3, 10, 15
(11) 3, 12, 12
(12) 4, 4, 4, 4

(13) 4, 5, 20
(14) 4, 6, 12
(15) 4, 8, 8
(16) 5, 5, 10
(17) 6, 6, 6




