Anti-SET

or, how getting bored with SET leads to interesting math

George Fisk & Nurry Goren (center) Minnesota Pi Mu Epsilon Conference

Color: Red, Green, Purple Number: 1, 2, 3 Filling: Open, Stripe, Solid Shape: Squiggle, Oval, Diamond

Color: Red, Green, Purple Number: 1, 2, 3 Filling: Open, Stripe, Solid Shape: Squiggle, Oval, Diamond

Set: 3 cards, each attribute all same or all different.

```
Color: Red, Green, Purple
Number: 1, 2, 3
Filling: Open, Stripe, Solid
Shape: Squiggle, Oval, Diamond
```


Set: 3 cards, each attribute all same or all different.

How many cards can you have without having a set?

Theorem (Pellegrino, 1971)

Every set of SET cards contains a set.

Xavier (Player 1) vs. Olivia (Player 2)

Theorem (Pellegrino, 1971)

Every set of 21 SET cards contains a set.

Anti-SET Rules

- Start with all 81 SET cards
- 2 players alternate taking any available card, tic-tac-toe style
- First to have a set in their hand *loses*

Moves: $\mathcal{X}_1, \mathcal{O}_1, \mathcal{X}_2, \mathcal{O}_2, \dots$

Winning Strategy for Xavier

Pick \mathcal{X}_n ...

Moves: $\mathcal{X}_1, \mathcal{O}_1, \mathcal{X}_2, \mathcal{O}_2, \ldots$

Winning Strategy for Xavier

Pick \mathcal{X}_n to complete the set through \mathcal{X}_1 and \mathcal{O}_{n-1} .

Point

Two points form a...

Two points form a...

Two lines intersect in ...

Or else they are...

... of $3^3 = 27$ cards ("3D space")

All $3^4 = 81$ cards ("4D space")

Winning Strategy for Xavier

Pick \mathcal{X}_n to complete the **line** through \mathcal{X}_1 and \mathcal{O}_{n-1} .

Detail: Can Xavier do this?

$$\mathcal{X}_1 \longrightarrow \mathcal{O}_{n-1} \longrightarrow$$
??

Proof by picture:

This is a *mitre* configuration:

Lemma: There are no ties

Theorem: Winning Strategy for Xavier

Pick \mathcal{X}_n to complete the line through \mathcal{X}_1 and \mathcal{O}_{n-1} .

But wait... our proofs only needed:

SET wasn't involved!

 $\langle \boldsymbol{c}, \boldsymbol{n}, \boldsymbol{f}, \boldsymbol{s} \rangle$

	С	n	f	S
0	Red	3	Open	Oval
1	Purple	1	Stripe	Squiggle
2	Green	2	Solid	Diamond

	С	n	f	S
0	Red	3	Open	Oval
1	Purple	1	Stripe	Squiggle
2	Green	2	Solid	Diamond

 $\langle 0,0,0,0\rangle$

	С	n	f	S
0	Red	3	Open	Oval
1	Purple	1	Stripe	Squiggle
2	Green	2	Solid	Diamond

	С	n	f	S
0	Red	3	Open	Oval
1	Purple	1	Stripe	Squiggle
2	Green	2	Solid	Diamond

	С	n	f	S
0	Red	3	Open	Oval
1	Purple	1	Stripe	Squiggle
2	Green	2	Solid	Diamond

	С	n	f	S
0	Red	3	Open	Oval
1	Purple	1	Stripe	Squiggle
2	Green	2	Solid	Diamond

$\langle 1,0,1,0\rangle$

	С	n	f	S
0	Red	3	Open	Oval
1	Purple	1	Stripe	Squiggle
2	Green	2	Solid	Diamond

$$\langle 1,0,1,0\rangle \qquad \langle 1,1,0,0\rangle$$

	С	n	f	S
0	Red	3	Open	Oval
1	Purple	1	Stripe	Squiggle
2	Green	2	Solid	Diamond

$\begin{array}{c|c} 0 \cdot \langle 0, 1, 2, 0 \rangle & 1 \cdot \langle 0, 1, 2, 0 \rangle & 2 \cdot \langle 0, 1, 2, 0 \rangle \\ \langle 0, 0, 0, 0 \rangle & \langle 0, 1, 2, 0 \rangle & \langle 0, 2, 1, 0 \rangle \end{array}$

 $\langle 1, 0, 1, 0 \rangle$ $\langle 1, 1, 0, 0 \rangle$ $\langle 1, 2, 2, 0 \rangle$ $+\langle \mathbf{1},\mathbf{0},\mathbf{1},\mathbf{0}
angle$ $\langle 0,0,0,0\rangle \qquad \langle 0,1,2,0\rangle \qquad \langle 0,2,1,0\rangle$

SET is an *Affine Geometry:* AG(2)

SET is an *Affine Geometry:* AG(2)

 $\left<\mathbf{1},\mathbf{0}\right>\mathbf{x}+\left<\mathbf{0},\mathbf{0}\right>$

SET is an *Affine Geometry:* AG(2)

 $\langle \mathbf{1},\mathbf{0}
angle \, \mathbf{x} + \langle \mathbf{0},\mathbf{1}
angle$

We can build SET = AG(n) for any dimension *n*: **Points:** $\langle p_1, p_2, ..., p_n \rangle$ **Lines:** $\vec{m}x + \vec{b}$ (\vec{m} , \vec{b} are points and x = 0, 1, 2) SET is AG(4):

SET: Searching for lines in an affine geometry.

Anti-SET: Avoiding lines in an affine geometry.

Theorem

Xavier can win Anti-SET played on AG(n), n > 1.

Cap: A set of points that contains no line. m(n): Size of a maximal cap in *n*-dimensional SET.

m(2) = 4

Proof:

Olivia takes every move from a maximal cap *C* containing *X*₀.

- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.

- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points outside *C*.

- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points outside *C*.

- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points outside *C*.

- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points outside *C*.

- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points outside *C*.

Proof:

- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points outside *C*.
- Olivia can make one last move outside of *C*, guaranteed to lose.*

* Not obvious!

Questions?

More information:

- David Clark and George Fisk and Nurry Goren: A variation on the game SET. Involve 9 (2) (2016) 249–264.
- Benjamin Lent Davis and Diane Maclagan: *The card game SET*. Mathematical Intelligencer 25 (3) (2003) 33–40.

Maureen T. Carroll and Steven T. Dougherty: *Tic-Tac-Toe on a finite plane*. Mathematics Magazine 77 (4) (2004) 260–274.