Anti-SET

or, how getting bored with SET leads to interesting math
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Color: Red, Green, Purple
Number: 1, 2, 3

Filling: Open, Stripe, Solid

Shape: Squiggle, Oval, Diamond
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Set: 3 cards, each attribute all same or all different. |
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Set: 3 cards, each attribute all same or all different. |
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How many cards can you have without having a set?

Theorem (Pellegrino, 1971)
Every set of SET cards contains a set.




Xavier (Player 1) vs. Olivia (Player 2)
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Theorem (Pellegrino, 1971)
Every set of 21 SET cards contains a set.

Anti-SET Rules

e Start with all 81 SET cards

e 2 players alternate taking any available card,
tic-tac-toe style
e First to have a set in their hand loses









Moves: Xy, O1, Xo, Oo, ...

Winning Strategy for Xavier

Pick X,. ..
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Moves: Xy, O1, Xo, Oo, ...

Winning Strategy for Xavier

Pick X, to complete the set through X7 and O,,_+.
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Point



Two points form a...
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Two points form a...
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Two lines intersect in ...

> @ @

a



Or else they are...
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.. of 32 = 9 cards
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... of 3% = 27 cards (“3D space”)
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81 cards (“4D space”)
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Winning Strategy for Xavier

Pick X, to complete the line through Xy and O,_;.

Detail: Can Xavier do this?

X On1 ??




Lemma: X can’t lose

Proof by picture:
X3
O1 Oo




Lemma: X can’t lose

Proof by picture:
X3
O 0o O




Lemma: X can’t lose

Proof by picture:




Lemma: X can’t lose

Proof by picture:

This is a mitre configuration: ﬁ



Lemma: X can’t lose

Proof by picture:




Lemma: There are no ties

Proof:
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Theorem: Winning Strategy for Xavier

Pick X, to complete the line through X3 and O,_1.

But wait... our proofs only needed:
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SET wasn’t involved!




We can represent SET cards as points:
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We can represent SET cards as points:
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We can represent SET cards as points:

- O

<Cvn7f7 >

_—

Color: Number:
Red 3(?)
Purple 1

Green 2



We can represent SET cards as points:
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Color:  Number: Filling:
Red 3(?) Open
Purple 1 Stripe
Green 2 Solid



We can represent SET cards as points:
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A

Color:  Number: Filling:

Red 3(?) Open Oval
Purple 1 Stripe  Squiggle
Green 2 Solid Diamond
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0| Red 3 Open Oval
1 | Purple 1 Stripe Squiggle
2| Green 2 Solid Diamond
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0| Red 3 Open Oval
1 | Purple 1 Stripe Squiggle
2 | Green 2 Solid Diamond
(0,0,0,0)
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0| Red 3 Open Oval
1 | Purple 1 Stripe Squiggle
2| Green 2 Solid Diamond

(0,0,0,0)  (0,1,2,0)
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0| Red 3 Open Oval
1 | Purple 1 Stripe Squiggle
2| Green 2 Solid Diamond

(0,0,0,0) (0,1,2,0) (0,2,1,0)
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Purple
Green

Open Oval
Stripe  Squiggle
Solid Diamond
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0| Red 3 Open Oval
1 | Purple 1 Stripe Squiggle
2 | Green 2 Solid Diamond
(1,0,1,0)
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0| Red 3 Open Oval
1 | Purple 1 Stripe Squiggle
2| Green 2 Solid Diamond

(1,0,1,0)  (1,1,0,0)
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0| Red 3 Open Oval
1 | Purple 1 Stripe Squiggle
2| Green 2 Solid Diamond

(1,0,1,0) (1,1,0,0) (1,2,2,0)
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(0,0,0,0) (0,1,2,0) (0,2,1,0)
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(0,0,0,0) + (0,1,2,0) + (0,2,1,0)
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(mod 3)



0-(0,1,2,0) 1-(0,1,2,0) 2-(0,1,2,0)
(0,0,0,0) (0,1,2,0) (0,2,1,0)
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(mod 3)



0-(0,1,2,0) 1-(0,1,2,0) 2-(0,1,2,0)
(0,1,2,0)x
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(1,0,1,0) + (1,1,0,0) + (1,2,2,0)
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(mod 3)



(0,0,0,0) (0,1,2,0) (0,2,1,0)
+(1,0,1,0) +(1,0,1,0) +(1,0,1,0)

(1,0,1,0)  (1,1,0,0)  (1,2,2,0)
QI PN
QI D
QD ab

(mod 3)



(0,0,0,0)  (0,1,2,0) (0,2,1,0)
+(1,0,1,0) +(1,0,1,0) +(1,0,1,0)
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+(1,0,1.0)
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SET is an Affine Geometry:

AG(2)
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(0,2) (1,2) (2,2)
Ny Ny Ny
(0,1) (1,1) (2,1)
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SET is an Affine Geometry:

AG(2)
> o o
0.2 (1,2) (2.2
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SET is an Affine Geometry:
AG(2)
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SET is an Affine Geometry:

AG(2)
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0.2 (1,2) (2.2
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We can build SET = AG(n) for any dimension n:

Points: (p;, Pz, E’”’>
Lines: mx + b (m, b are points and x = 0,1,2)

SET is AG(4):

(0,0,0,1) (2,1,1,2) (1,2,2,0)
(1,2,2,1) x +(0,0,0,1)



SET: Searching for lines in an affine geometry.

Anti-SET: Avoiding lines in an affine geometry.

Xavier can win Anti-SET played on AG(n), n > 1.




Cap: A set of points that contains no line.
m(n): Size of a maximal cap in n-dimensional SET.




Theorem: Olivia can force the game to m(n) moves. |

Proof:

(0.2) (1,2) (2,2)
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Theorem: Olivia can force the game to m(n) moves. |

Proof:
@ Olivia takes every move from a o @O @
maximal cap C containing Xp. 0.2) (1,2) (2,2)




Theorem: Olivia can force the game to m(n) moves. |

Proof:
@ Olivia takes every move from a <o @
maximal cap C containing Xp. 0,2) (1,2) (2,2)
@ Thus Olivia never makes a line
within the cap. @
on 0|en

Xp. @

0,8 (1,0)| 2,0




Theorem: Olivia can force the game to m(n) moves. |

Proof:
@ Olivia takes every move from a > X;)
maximal cap C containing Xp. (0,2) (1,2) (2,

@ Thus Olivia never makes a line
within the cap. O
@ Xavier only takes points outside (0, 1/) (1, 11 (2,1)
C.
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Theorem: Olivia can force the game to m(n) moves. |

Proof:

@ Olivia takes every move from a %(g (12) ()2(;)

maximal cap C containing Xp.
@ Thus Olivia never makes a line

within the cap. ‘
@ Xavier only takes points outside (0, g 1, 11 (2,1)

C.




Theorem: Olivia can force the game to m(n) moves. |

Proof:

@ Olivia takes every move from a %(g (12) ()2(;)

maximal cap C containing Xp.
@ Thus Olivia never makes a line

within the cap. ‘
e

@ Xavier only takes points outside
C.
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Theorem: Olivia can force the game to m(n) moves. |

Proof:

@ Olivia takes every move from a %(g (12) ()2(;)

maximal cap C containing Xp.
@ Thus Olivia never makes a line

within the cap. O
78 o

@ Xavier only takes points outside
C.




Theorem: Olivia can force the game to m(n) moves. |

Proof:

o Olivia takes every move from a %(g (1.2) ()2(3)

maximal cap C containing Xp.
@ Thus Olivia never makes a line

within the cap. O
78 o

@ Xavier only takes points outside
C.

@ Olivia can make one last move
outside of C, guaranteed to lose.* ) (Q 60‘3 )<§

* Not obvious!




Questions?



More information:

[§ David Clark and George Fisk and Nurry Goren: A variation on the
game SET.
Involve 9 (2) (2016) 249-264.

[§ Benjamin Lent Davis and Diane Maclagan: The card game SET.
Mathematical Intelligencer 25 (3) (2003) 33—40.

[3 Maureen T. Carroll and Steven T. Dougherty: Tic-Tac-Toe on a
finite plane.
Mathematics Magazine 77 (4) (2004) 260—-274.
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